- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000100000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Alex Conway (1)
-
Guido Tagliavini (1)
-
Martín Farach-Colton (1)
-
Michael A. Bender (1)
-
William Kuszmaul (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper introduces a new data-structural object that we call the tiny pointer. In many applications, traditional log n-bit pointers can be replaced with o(log n)-bit tiny pointers at the cost of only a constant-factor time overhead and a small probability of failure. We develop a comprehensive theory of tiny pointers, and give optimal constructions for both fixed-size tiny pointers (i.e., settings in which all of the tiny pointers must be the same size) and variable-size tiny pointers (i.e., settings in which the average tiny-pointer size must be small, but some tiny pointers can be larger). If a tiny pointer references an element in an array filled to load factor 1 — δ, then the optimal tiny-pointer size is Θ(log log log n + log δ-1) bits in the fixed-size case, and Θ(log δ-1) expected bits in the variable-size case. Our tiny-pointer constructions also require us to revisit several classic problems having to do with balls and bins; these results may be of independent interest. Using tiny pointers, we revisit five classic data-structure problems. We show that: • A data structure storing n v-bit values for n keys with constant-time modifications/queries can be implemented to take space nv + O(n log(r) n) bits, for any constant r > 0, as long as the user stores a tiny pointer of expected size O(1) with each key—here, log(r) n is the r-th iterated logarithm. • Any binary search tree can be made succinct with constant-factor time overhead, and can even be made to be within O(n) bits of optimal if we allow for O(log* n)-time modifications—this holds even for rotation-based trees such as the splay tree and the red-black tree. • Any fixed-capacity key-value dictionary can be made stable (i.e., items do not move once inserted) with constant-time overhead and 1 + o(1) space overhead. • Any key-value dictionary that requires uniform-size values can be made to support arbitrary-size values with constant-time overhead and with an additional space consumption of log(r) n + O(log j) bits per j-bit value for an arbitrary constant r > 0 of our choice. • Given an external-memory array A of size (1 + ε)n containing a dynamic set of up to n key-value pairs, it is possible to maintain an internal-memory stash of size O(n log ε-1) bits so that the location of any key-value pair in A can be computed in constant time (and with no IOs). These are all well studied and classic problems, and in each case tiny pointers allow for us to take a natural space-inefficient solution that uses pointers and make it space-efficient for free.more » « less
An official website of the United States government

Full Text Available